Автомобильный генератор: устройство, назначение и неисправности

Содержание:

Принцип работы автомобильного генератора – принципиальная элеткросхема узла

Недостаточно знать, как устроен генератор автомобиля в общем, если вы хотите полностью разобраться с принципом его работы. Надлежит, кроме того, изучить электросхему генераторного узла, которая включает в себя такие компоненты:

  • АКБ;
  • включатель зажигания;
  • «массу»;
  • щеточный узел;
  • конденсатор, предназначенный для подавления помех;
  • диоды обмотки;
  • плюсовой выход механизма;
  • диоды выпрямителя (силового) – отрицательные и положительные;
  • питание обмотки;
  • регулятор напряжения;
  • обмотки статора;
  • сигнальную лампу (она подает сигнал о неисправности описываемого устройства).

А вот теперь легко понять, как работает автомобильный генератор. При повороте ключа в замке зажигания через контактные кольца и щеточный механизм ток подается на обмотку возбуждения. В ней наводится необходимое поле (магнитное), что приводит в движение ротор, который начинает перемещать коленчатый вал. На выводах статорных обмоток создается напряжение переменного характера.

Постоянное же напряжение из переменного получается за счет работы выпрямительного блока, что дает возможность генераторному устройству снабжать АКБ током. При изменении показателей частоты вращения и нагрузки коленвала начинает действовать регулятор напряжения. Его задача состоит в том, чтобы вовремя запустить обмотку возбуждения. Как видим, принцип функционирования генератора довольно-таки прост и понятен.

Главная →

Устройство → Электрическая система → Генератор →

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Как работает автомобильный генератор?

Работа генератора невозможна без приводной силы двигателя. Индукция электродвижущей силы, возникающая в области действия магнитного поля, создаёт напряжение на полукольцах, которое снимается напрямую и далее поступает по схеме в качестве постоянного тока до конечных потребителей.

Система зажигания двигателя: 1 – генератор;2 – выключатель зажигания;3 – распределитель зажигания;4 – кулачок прерывателя;5 – свечи зажигания;6 – катушка зажигания;7 – аккумуляторная батарея

Особенности расположения генератора на картере в подкапотном пространстве предполагает наличие шкивов на самом генераторе и коленчатом валу, соединённых ременной передачей. Для такого типа соединения требуется система натяжения ремня, которая осуществляется при помощи опоры.

Современные генераторы переменного тока способны давать напряжение от 7 до 28 вольт и соответствующую мощность в районе 1380 ватт, хорошим показателем КПД в этом случае будет считаться отметка в 50-60%.

Пуск двигателя ознаменовывается повышенным током статора до значений в несколько сотен ампер, поэтому все приборы и сам двигатель до установления рабочих параметров генератора работают благодаря питанию аккумуляторной батареи.

Сразу после передачи вращающегося момента на шкив генератора, вращающийся якорь начинает создавать электромагнитное поле, которое в свою очередь запускает процесс движения переменного тока с обмоток на контактные кольца, щётки, и далее через выпрямитель постоянный ток поступает на аккумулятор и приборы, нуждающиеся в электричестве. Не всегда обороты двигателя могут обеспечить достаточную мощность генератора для питания особо мощных приборов, поэтому в случае недостатка электроэнергии в дело вступает аккумулятор.

Способ подключения генератора имеет решающее значения для автомобилей с разным потреблением электричества. Если на транспортном средстве установлено мощное оборудование, используется схема подключения «Треугольник». В стандартных моделях современных автомобилей генераторы подключаются по схеме «Звезда». Выходной ток в этом случае будет в 1,7 раза меньше, чем в первом случае, но со своей работой без дополнительной нагрузки он справляется отлично.

Синхронный и асинхронный генератор отличия

По конструкционным особенностям передачи магнитного поля на обмотке статора все генераторы можно разделить на асинхронные и синхронные .

Альтернатор это самая важная часть генератора, именно он выполняет главную функцию преобразования механической энергии от вращения вала двигателя в электрическую энергию переменного тока.

Синхронный альтернатор по своему строению является более сложным и обладает обмотками на роторе и угольными щетками потому второе его название – щёточный.

Асинхронный генератор конструктивно более простой из-за отсутствия щеток его называют бесщеточным, но это не значит что синхронный генератор заведомо хуже синхронного. Есть некоторые технические нюансы, которые уравновешивают плюсы и минусы обоих типов генераторов. Какой генератор выбрать синхронный или асинхронный зависит от того где и как вы будете его применять .

Начнем с более популярных – синхронных, рассмотрим их преимущества и недостатки.

Качественный альтернатор для прохождения тока на роторе имеет медные обмотки и скользящие контакты, называемые щетками, задача которых являются снятия напряжения с подвижной части на неподвижную.

Именно медная обмотка и узел щеток является гарантией легкого переноса пусковых нагрузок и кратковременных перегрузок, таким образом, синхронный альтернатор выдает на выходе 220 вольт без перепадов и скачков. Возможное минимальное допустимое отклонение напряжения составляет около 5%.На бытовом уровне синхронный генератор будет более полезен, так как в основном используются чувствительные к перепадам напряжения: газовые котлы, холодильники, телевизоры, стиральные машина и другие электроприборы. Как мы видим, преимуществом синхронного генератора является выработка стабильного напряжения.

Генераторы с асинхронным альтернатором также имеют целый ряд преимуществ и недостатков .

— Отсутствует обмотка на подвижной части и в щетках нет никакой необходимости. Конструкция асинхронного генератора проще, а значит надежнее и долговечнее и обслуживание по замене щеток вообще отсутствует.

— Обмотки медной нет и соответственно перегрева быть не может, значит не требуется охлаждение. Конструкция бесщеточного генератора такова, что влага, пыль и грязь не попадают во внутрь, что повышает класс защиты.

— Бесщеточный генератор обладает самым высоким уровнем защиты .

— Вес и габариты асинхронного генератора немного меньше из-за отсутствия у него обмотоки и вентилятора для охлаждения.

— А самым главным плюсом асинхронного генератора является невосприимчивость к коротким замыканиям в нагрузках, что особенно важно при подключении к электростанции сварочного оборудования

Однако асинхронный генератор имеет и минусы:

— главное это низкая способность «проглатывать» пусковые перегрузки поэтому у него напряжение на выходе нестабильно. В официальных характеристиках асинхронного генератора указано, что отклонения могут быть до 10%, но на практике скачки выходят за пределы допустимого отклонения.

— Функция автоматической регулировки напряжения в данных генераторах не бывает и в результате скачки напряжения могут испортить дорогостоящее оборудование

При выборе типа генератора нужно определить для каких целей нужен генератор: если нужно запитывать бытовую и компьютерную технику то очевидно — нужен щёточный генератор или как его еще называют синхронный и желательно с функция АВР.

Если нужен мотор для профессиональных строительных работ с использованием генератора на улице или в цеху где повсюду грязь, пыль и влага, тут выбор в пользу бесщеточного или асинхронного генератора.

Классификация генераторов

Существует несколько признаков, на основании которых электрический генератор можно отнести к одной из разновидностей:

  • Сфера применения.
  • Режимы работы.
  • Фазность.
  • Автономность.

Эксплуатация По каждому из признаков надо изучить модель заранее, тогда и выбор проще будет сделать.

Автономность

Полная независимость от централизованных источников энергии — одно из главных преимуществ, которыми обладают современные генераторы. В зависимости от этого показателя, модели делятся на мобильные либо стационарные.

Стационарные

Речь идёт о генераторных станциях, в основе работы которых — дизельные двигатели. Подходят для снабжения электрической энергии потребителей, удалённых от других подобных объектов. Обеспечивают снабжение током на тех территориях, где даже малейшая остановка производственных процессов приведёт к серьёзным негативным последствиям.

Мобильные

Чаще всего эти агрегаты — самые компактные. Допускают перемещение в пространстве установки. У передвижных станций сфера применения довольно широка:

  1. Электросварка.
  2. Местное освещение.
  3. Снабжение током бытовых электроприборов, и так далее.

Обслуживание и ремонт Внутри оборудования размещают двигатель внутреннего сгорания, который способен работать на дизельном топливе либо бензине. Агрегаты отличаются друг от друга по габаритам. Одного человека хватает, чтобы перемещать только самые маленькие устройства. Но есть мобильные варианты, монтаж которых проводят на автомобильных прицепах.

Фазность

Агрегаты разделяют на трёх- и однофазные в зависимости от внутренней структуры устройств.

Однофазные

Отличаются способностью производить однофазный ток. Питание бытовых приборов — главное назначение устройств. Обычно аппараты выпускают мобильными, чтобы с ними было проще обращаться. Частные домовладения — объекты, внутри которых однофазные агрегаты можно встретить чаще всего. Например — для удовлетворения различных нужд на бытовом уровне.

Трёхфазные

Питание силового электрооборудования — вот в чём состоит основная функция. Иногда происходит разделение такой энергии по нескольким фазам. Для питания электропроводки это очень удобное решение, позволяющее развести линию на несколько частей.

Интересно! Главное — чтобы мощность потребления у всех линий оставалась примерно одинаковой. Генератор быстро выходит из строя, если между значениями образуется серьёзная разница.

Режимы работы

Основные и резервные — две главные разновидности режимов работы согласно этой классификации.

Основные

Такие аппараты созданы, чтобы работать на постоянной основе. Группу промышленных установок представляют мощные электрогенераторы, снабжённые дизельными двигателями. Актуальны для объектов, которым наличие электрической энергии требуется постоянно.

Резервные

По названию легко понять, что такие электрические генераторы применяются лишь в некоторых, исключительно крайних случаях. Например, если централизованное электроснабжение отключают на некоторое время. Такие приборы могут включаться, если срабатывает реле, реагирующее на уменьшение напряжения. Беспрерывная работа допустима только на протяжении нескольких часов.

Сфера применения

Генераторы выпускают с расчётом на два основных направления — бытовые условия либо промышленные объекты.

В быту

Выбор бытовых генераторов на современном рынке порадует любого потребителя, вне зависимости от масштабов и запросов. Обычно выбирают однофазные установки, способные наладить бесперебойное снабжение электрическим током при аварийных ситуациях. Питание выносного электрооборудования — ещё одна сфера применения. Качество тока становится особенно важным показателем, если речь идёт о бытовых электроприборах, применяющих цифровую элементную базу. В этом случае энергия должна обладать такими параметрами: 220 В, 1 А, 50 Ггц.

Вам это будет интересно Виды и применение греющего электрического кабеля

На даче

При электросварочных работах применяют установки, обладающие повышенной мощностью. Преимущество в том, что для формирования электромеханической дуги вырабатывается ток с серьёзной силой.

Обратите внимание! Если в инструкции не описано сразу применение для электросварки, то стоит отказаться от подобной идеи. Иначе генераторы быстро портятся

Промышленные объекты

Чаще речь идёт о независимых мощных стационарных установках. Они актуальны для промышленных предприятий и целых жилых районов, больниц, общественных учреждений с высокой проходимостью. Тогда такие механические приспособления актуальны.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Виды приборов

Несмотря на одинаковое строение, они применяются в различных видах устройств и типах транспорта. Определённый тип ЭГ применяется в различных ситуациях. Выделяют основные виды устройств-генераторов, которые классифицируются по типу применения:

  • автомобильный;
  • электрический;
  • инвентарный;
  • дизельный;
  • синхронный;
  • асинхронный;
  • электрохимический.

Основным предназначением автомобильного аккумулятора является вращение коленвала. Применяется новый тип — гибридный генератор, выполняющий роль стартера. Основным принципом работы можно считать использование для включения зажигания, при этом I течёт по контактным кольцам, а затем к щелочной части. Далее переходит на обмотку возбуждения, образовывается магнитное поле и запускается ротор, создающий электромагнитные волны.

Эти волны пронизывают обмотку статора. После происходит возникновение переменного тока на выходе обмотки. Если генератор осуществляет работу в режиме самовозбуждения, то при этом частота вращения увеличивается до допустимого значения, а переменный ток преобразуется в постоянный при помощи выпрямителя.

Электрогенератор выполняет функции преобразователя механической энергии в электрическую. Источников может быть много: вода, пар, ветер, ДВЗ и другие сторонние силы, оказывающие механическую работу на ротор генератора.

Очень распространён инверторный тип ЭГ. Он представляет собой автономный источник питания, который производит качественную электрическую энергию. Применяется практически везде и является очень надежным источником питания, при котором отсутствуют любые скачки U. Основной принцип действия:

  • вырабатывается переменный высококачественный ток, который при помощи диодного моста выпрямляется;
  • постоянный ток накапливается в аккумуляторах;
  • из аккумуляторов при помощи инвертора происходит преобразование в переменный стабилизированный ток.

Ещё одним отличным и долговечным вариантом является дизельный ЭГ, преобразующий энергию топлива в электрическую. Топливо сгорает и преобразовывается из химического вида энергии в тепловую. Затем тепловая энергия преобразовывается в механическую. Затем происходит трансформация по старой схеме: механическая энергия в электрическую.

В синхронном ЭГ ротор выполняет роль постоянного магнита с полюсами, число которых колеблется от 2 и более. Однако должна соблюдаться кратность 2. Во время запуска ротор генерирует слабое электромагнитное поле, но в процессе увеличения частоты вращения появляется ток в обмотке возбуждения. Во время этого процесса появляется U, поступающее на устройство, контролирующее его значение при изменении электромагнитного поля. Генераторы синхронного типа отлично зарекомендовали себя благодаря стабильно вырабатываемому U. Однако у них есть существенный недостаток — возможна перегрузка по току, а также наличие щёточного узла, который приходится иногда обслуживать.

Принцип работы ЭГ асинхронного типа основан на постоянном нахождении в режиме «торможения с подвижной частью», вращающейся с опережением. Ротор бывает фазным и короткозамкнутым. Вспомогательное магнитное поле создаётся при помощи обмотки возбуждения и продолжает индуцироваться в роторе. От количества оборотов зависит частота тока и U.

Очень интересным источником электричества является электрохимический генератор. Энергия электрического типа получается из водорода. Он является химическим источником тока, так как проходит реакция этого типа взаимодействия молекул кислорода и водорода.

Однако этот источник довольно опасен. Ведь водород может и взорваться при больших количествах, а кислород выполняет роль катализатора. В очаге взрыва водорода произойдёт значительное возгорание, так как кислород усилит горение.

Кроме того, при использовании ЭГ нужно совместно с ними применять и устройства, регулирующие параметры U и частоты. Принцип работы устройства заключается в поддержании постоянных значений U и других параметров электроэнергии для качественного питания потребителей. Регулятор также защищает генератор от перегрузок и аварийного режима. При возникновении аварийной ситуации при наличии регулятора, генератор не запустится и останется в выключенном состоянии. Это возможно при КЗ в цепи потребителей. Эти приборы улавливают U, частоту и I, а также Ф.

Дополнительная информация о подключении, эксплуатации

Установку тоже лучше доверить специалистам, чтобы прибор работал в дальнейшем без перебоев. В этом случае он не станет и источником опасности для окружающих. Подключение прибора предполагает соединение его электропроводки с централизованной сетью. Поэтому требуется соблюдение дополнительных правил по безопасности.

Вот основные рекомендации:

  • Когда монтажные работы завершены — агрегат готовят к эксплуатации.
  • Для этого проверяют уровень масла в картере.
  • Такую процедуру осуществляют, пока агрегат находится на ровной горизонтальной поверхности.
  • По мере расходования производят заправку топливом.
  • Если агрегат внутри помещения — при обслуживании обязательно проветрить.
  • Заправка не допускает курение, использование открытого огня.
  • Бензин заливают максимально аккуратно, не допуская протечек.

Один из вариантов

Когда подготовительные работы завершены, двигатель запускают. За это отвечает ручной или электрический стартер, в зависимости от модели.

Генераторы переменного тока на современном рынке представлены в большом количестве моделей. Каждый делает окончательный выбор в зависимости от потребностей, целей использования. Различные системы питания, диапазон мощности определяются объектом, внутри которого монтируют установку. Иногда оценивают доступность конкретных видов топлива на территории того или иного региона. Рекомендуется выбирать модели, обслуживание которых требует наименьших затрат.

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.

На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности). В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов. Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

Крепление и привод

За работу генератора отвечает шкив двигателя посредством работы ременной передачи. Количество оборотов агрегата зависит от диаметров различных шкивов, входящих в состав конструкции основного устройства.

В современных моделях транспортных средств встречается поликлиновый ремень, обладающий большой гибкостью. С его помощью удается привести в действие шкивы минимального диаметра, благодаря чему увеличиваются обороты автогенератора. Существует несколько способов натяжения такого ремня, что очень удобно. Выбор способа зависит от модели транспортного средства, а также от конструкции натяжителя. Обычно предпочитают натягивать ремень специальными шариковыми роликами.

Для чего в генераторе регулятор напряжения?

При изменении частоты оборотов коленчатого вала и соответственно ротора в бортовой сети могут возникнуть скачки напряжения, которые негативно сказываются на работе потребителей. Скачки устраняются за счет ограничения тока возбуждения, передаваемого через щетки с регулятора напряжения на ротор. Управление осуществляется путем изменения времени подключения обмотки якоря в зависимости от нагрузки на бортовую сеть.

Неисправность генератора можно определить по индикатору на панели приборов. Горение лампочки заряда аккумулятора после запуска говорит о недостаточном напряжении в сети, а мигание указывает на превышение.

Схемы подключения

По числу использующихся фаз все генераторные агрегаты делятся на две группы:

  • однофазные;
  • трехфазные.

Однофазный генератор

Схема подключения оборудования с одной фазой

Этот тип устройств используется для работы с любыми потребителями электроэнергии, главное — чтобы они были однофазными.

Самые простые конструкции состоят из:

  • магнитного поля;
  • прокручивающейся рамки;
  • коллекторного устройства, предназначенного для отвода тока.

Благодаря наличию последнего в результате рамочного прокручивания через щетки образуется постоянный контакт с рамкой. Параметры тока, который меняется с учетом закона гармоники, будут разными и передаются на щеточный узел, а также в схему потребителей напряжения. На сегодняшний день однофазные агрегаты являются наиболее популярным типом автономного источника питания. Они могут использоваться для подключения практически всех бытовых электроприборов.

Трехфазный генератор

Такой тип устройств относится к классу универсальных, но более дорогих агрегатов. Отличительная особенность трехфазных генераторов заключается в необходимости постоянного и дорогостоящего технического обслуживания. Несмотря на это, данный тип установок получил наибольшее распространение.

Это обусловлено следующими преимуществами:

  1. В основе агрегата используется вращающееся круговое магнитное поле. Это обеспечивает возможность хорошей экономии при разработке оборудования.
  2. Трехфазные генераторы состоят из уравновешенной системы. Это обеспечивает ресурс эксплуатации агрегата в целом.
  3. В работе трехфазного устройства одновременно используется два напряжения — линейное и фазовое. Оба применяются в единой системе.
  4. Одно из основных преимуществ — повышенные экономические показатели. Это обеспечивает снижение материалоемкости силовых проводов, а также трансформаторных агрегатов. Благодаря данной особенности упрощается процедура передачи электричества на большие расстояния.

Схема соединения «звездой»

Данный тип подключения подразумевает электросоединение концов обмоток в определенной точке, которая именуется «нулем». При выполнении такого подсоединения нагрузку к генераторному узлу можно подать посредством трех или четырех кабелей. Проводники от начала обмоток считаются линейными. А основной кабель, который идет от нулевой точки, является нулем. Параметр напряжения между проводниками считается линейным (эта величина выше в 1,73 раза по сравнению с фазной).

Схема типа «звезда» для подключения трехфазного оборудования

Одной из основных особенностей данного варианта является равенство токов. Четырехпроводной тип «звезды» с нейтральным кабелем считается самым распространенным. Его использование позволяет предотвратить перекос фаз при подсоединении несимметричной нагрузки. К примеру, если на одном контакте она активная, а на другом — реактивная или емкостная. При использовании такого варианта обеспечивается максимальная защищенность включенного электрооборудования.

Схемы соединения «треугольником»

Данный метод подключения представляет собой последовательное подсоединение обмоток трехфазного агрегата. Конец первой намотки должен быть соединен с началом второй, а ее контакт — с третьей. Затем проводник от обмотки под номером 3 подсоединяется к началу первого элемента.

При такой схеме линейные кабели отводятся от точек подключения обмоток. Параметр линейного напряжения по величине соответствует фазному. А значение первого тока выше второго в 1,73 раза. Описанные свойства актуальны исключительно в случае равномерной нагрузки фаз. Если она будет неравномерной, то параметры необходимо пересчитать графическим или аналитическим способом.

Электросхемы соединений агрегата «треугольником»

Схема автомобильного генератора – из чего состоит генератор автомобиля?

Данный узел автомобиля необходим для зарядки аккумуляторной батареи и обеспечения электрооборудования при двигателе ТС необходимым ему электрическим питанием. Как правило, находится генератор в передней части автомобильного двигателя. На сегодняшний день существует два конструктивных варианта исполнения интересующего нас устройства:

  • стандартная;
  • компактная.

И первая и вторая конструкции имеют ряд общих элементов. К таковым относят следующие механизмы:

  • щеточный узел;
  • регулятор напряжения;
  • статор;
  • выпрямительное устройство;
  • корпус;
  • ротор.

Разница же между стандартным и компактным генератором заключается в том, какую конструкцию имеет их корпус, приводной шкив, выпрямительный узел и вентилятор. Кроме того, они имеют разные геометрические размеры, что зависит не только от их устройства, но еще и от фирмы-производителя. При этом работа автомобильного генератора остается неизменной, какой бы вид ему не придали инженеры-конструкторы.

Устройство генератора

Все электрогенераторы выдают ток, но он разный, поэтому отличается конструкция.

Устройство генератора постоянного тока

У агрегата постоянного тока массивный корпус служит статором, обмотки полюсные, за счет смещенных пазов размещения обмоток магнитное поле постоянное, шумность невысокая. Якорь с токосъемной частью монтируется между обмотками, опирается на подшипники, закрепленные на крышках. Щеткодержатели крепятся к задней стенке, положительная щетка не заизолирована.

Существуют модели, укомплектованные дополнительными обмотками и второй парой щеток. Разработаны 3 схемы подключения, отличающиеся по типу возбуждения:

  • независимая;
  • параллельная;
  • смешанная.

Устройство генератора переменного тока

Трехфазные электрогенераторы выпускаются в 2-х вариантах: стандартные и компактные, но устройство отличается мало:

  1. корпус (две крышки), элементы для крепления на мотор;
  2. магнитопровод, трехфазные медные намотки;
  3. шкив, через ремень передающий на ротор вращение;
  4. ротор;
  5. щетки;
  6. регулятор напряжения;
  7. выпрямитель из силовых диодных элементов.

Для производства компактных моделей электрогенераторов используются современные технологии и материалы.

Генератор располагается перед мотором, через проушины на крышках закрепляется болтами на кронштейны. Ротор с контактными кольцами у задней крышки, привод и шкив — у передней. Крышки производятся из сплавов алюминия, оснащаются окнами для вентиляции на цилиндрической или торцевой части. Щетки закреплены на задней крышке вместе с выпрямителем, регулятором напряжения. Крышки при помощи длинных винтов зажимают статор. Щетки производятся из графита, монтируются в диэлектрические держатели.

Для изготовления статоров используются листы стали. Элементы соединяются заклепками или сваркой. Для намотки создается 36 пазов, заизолированных пленкой или эпоксидкой.

Ротор состоит из системы полюсов, поделенных на две части, оснащенных «клювами» (выступами). У каждой части 6 полюсов, напрессованы на вал из нетвердой автоматной стали. Посередине монтируется втулка. Твердая сталь для изготовления вала используется, если на концах монтируются цапфа закаливания, подшипники. Для фиксации шкива имеется паз и резьба.

Щетки прижимаются пружинами, существует 2 вида этих элементов:

  • электрографитовые;
  • меднографитовые.

Первый вид служит дольше, но теряет напряжение во время контакта с кольцом, снижая параметры на выходе.

Также существует 2 вида диодных мостов:

  • диоды таблеточные, припаянные к системе охлаждения с большими ребрами;
  • диоды силовые, запрессованные в пластины, отводящие тепло.

Вспомогательный узел для выпрямления состоит из цилиндрических или шарообразных диодов или герметичного блока, подключенного при помощи шин. Все элементы выпрямителя покрываются составом, предотвращающим короткое замыкания.

Для охлаждения используется вентилятор. Регуляторы напряжения состоят из полупроводников, меняют напряжение одновременно с колебаниями температуры среды. Принцип действия не зависит от конструктивного исполнения.

Напряжение в сети «скачет», если меняется частота оборотов ротора и коленчатого вала. Это оказывает отрицательное воздействие на потребителей. Чтобы избежать скачков, требуется ограничение тока возбуждения, передаваемого через щетки. Эту функцию выполняет регулятор, меняющий время для подключения обмотки, базируясь на общую нагрузку сети.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector